

Course Agenda Corrosion control theory and treatment options Assessing need for a corrosion control evaluation Performing a corrosion control evaluation Using corrosion control evaluation to help meet LCRR

 Metallic Corrosion in Drinking Water

 • Corrosion is the deterioration of metallic surfaces due to the loss of metal

 • Corrosion is an electrochemical process involving the movement of electrons

 • Driven by oxidation/reduction reactions

 • Net result is corroding metal loses electrons and dissolves into water

1.5Lerti

Galva	nic Serie	s Predicts if	Galvanic Co	orrosion can Occur
	Material	Anode reaction	Potential (volts)	
Corrodes	Magnesium	$Mg_{(s)} \rightarrow Mg^{2+} + 2e^{-}$	+2.37	 Material with greater
easily	Zinc	$Zn_{(s)} \rightarrow Zn^{2+} + 2e^{-}$	+0.76	potential (volts)
	Steel, iron	$Fe_{(s)} \rightarrow Fe^{2+} + 2e^{-}$	+0.44	corrodes when in
	Cast iron	$Fe_{(s)} \rightarrow Fe^{2+} + 2e^{-}$	+0.44	contact with material of
	Tin	$Sn_{(s)} \rightarrow Sn^{2+} + 2e^{-}$	+0.14	lower potential
	Lead	$Pb_{(s)} \rightarrow Pb^{2+} + 2e^{-}$	+0.13	Greater difference in
	Brass	-	≈ -0.34	potentials, greater
-	Bronze	-	≈ -0.31	tendency for corrosion
Difficult to	Copper	$Cu_{(s)} \rightarrow Cu^{2*} + 2e^{-}$	-0.35	to occur
corrode	Gold	$Au_{(s)} \rightarrow Au^{3+}+3e^{-}$	-1.5	
ASDWAL				***

15

KNOWLEDGE CHECK
Can the tendency for a metal to corrode can be predicted?
(True/False)

Туре	Description	Becomes relevant when
Uniform	Uniform thinning of metal	Fresh lead or copper surface present
Galvanic	Metals of different electrochemical potential in contact within electrolyte	Lead contacts more noble (cathodic) metal.
Microbially influenced	Microbes moderate or catalyze corrosion	Microbial action releases metals or destabilizes scales
Selective leaching	Zinc selectively leached from galvanized pipe	Loss of zinc allows galvanized pipe to corrode; these corrosion products retain/release lead or other metals

Types of Corrosion Resulting in Pipe Failure Becomes relevant when Туре Description Localized formation of Pitting Problem for copper pipe pits Corrosion at voids · Limited concern with Crevice between surfaces respect to lead and copper • Possible in Fe pipe when Corrosion worsened by Stress high levels of mechanical associated with external corrosion stress • Corrosion deposits in Fe Corrosion worsened by mechanical fatigue pipe create unacceptable Fatigue head loss X ASDWAL

Dissolved and Particulate Metal Release

Dissolved metal released by Corrosion of metal Dissolution of corrosion

Particulates containing metals

Forces acting on deposits

Less force needed to release

· Dissolution weakens deposits

 Profile sampling can capture dissolved and particulate metal

deposits

particulates

released by

release

Laminar

Forces and Stresses Acting on Pipe Wall Deposits

Turbulent

Velocity profile in pipe

· Water flow in pipe creates shear stress $(\boldsymbol{\tau})$ on deposits adhering to pipe

Shear stress increases with

Deposit breaks free when shear strength is exceeded

Other forces release deposits

Turbulent vs. laminar flow (τ_t > τ_i)

 Distance from wall Average velocity of water

 Deposit to wall Within deposit

wall

ASDWAL

Collectes 4ome pl

Coli

X

ASDWAL

28

First

	Corrosion is an electrochemical process that releases metal ions
Summary	 Involves transfer of electrons which ultimately cause the release of metal ions and formation of corrosion scales on pipe walls Specific conditions must exist for corrosion to occur Tendency for corrosion to occur can be predicted from a metal's electropotential Multiple types of corrosion exist
	ASDWA

Managing Water Quality to Promote Stable Pb Scale Formation

Form lead(IV) oxide	High ORP by maintaining elevated Cl ₂ residual (1.5-2 mg/L residual)	 Difficult to maintain sufficient residual – particularly in premise plumbing DBP formation
Form lead(II) carbonate(s)	Adjust pH and/or DIC (alkalinity) (maintain pH +/- 0.25)	 Sensitive to changes in pH and alkalinity May conflict with other compliance requirements
Form lead(II) phosphate(s)	Add <u>ortho</u> phosphate (1 - 4 mg/L as PO ₄)	 Additional chemical Additional nutrient load to WWTP Additional biological activity in distribution system May promote movement of particulate lead
SDWAL		₩.

Parameter	Impact	L
Chloride	 Corrosion rates increase with greater chloride levels Sensitive to raw water contamination by road salt 	
Sulfate	 May increase or decrease corrosion rates Ratio with chloride (CSMR) important when galvanic corrosion is present 	
Natural organic matter (NOM)	 Interferes with orthophosphate corrosion inhibitor Produces more porous corrosion scales 	
Ammonia	 Forms combined chlorine in free chlorine systems reducing ORP of water Promotes greater biological activity (nitrification) 	
Iron	Particulate iron can sorb Pb, which is mobilized with iron particle	
Aluminum	 Interferes with orthophosphate corrosion inhibitor Aluminum deposition weakens Pb scales/deposits 	
Assimilable organic carbon	Higher levels encourage bioactivity and biofilms - weakens scale/deposit	
Temperature	Increase rate of corrosion	

Observation	Impact
Promotes formation amorphous lead scale	Weakens scale increasing risk of lead release
Interferes with formation of lead phosphate scales	Reduces effectiveness of orthophosphate as lead corrosion inhibitor
Acts as lead scavenger	Vector for movement of particulate lead
Mn(IV) acts as electron acceptor during lead oxidation	Release soluble lead
Mn(II) catalyzes Pb(II) oxidation to Pb(IV) in presence of Cl_2	Possible benefit(!) of Mn by promoting formation of PbO ₂
Use of polyphosphate to sequester Mn	Causes destabilization of lead scales and lead release

	In aged Pb pipes, the sources of Pb release are generally Pb bearing corrosion scales rather than the pipe itself
Summary	 The most stable Pb mineral scales are: Pb(IV) oxides - requires high Cl₂ residual Pb(II) phosphates - requires PO₄ addition Pb(II) carbonates - requires management of pH and DIC
	ASDWAL

	In reality, deposits on Pb pipes tend to be amorphous rather than pure Pb minerals • Less resilient than pure minerals • More difficult to model	
Summary	Water quality must be managed to maintain conditions which promote formation of resilient pipe scales/deposits	
	 Pb(II) phosphates In some cases Pb(IV) oxides 	
	ASDWA	**
56		

2018	Cu release tends to decrease as Cu pipe ages Cu release primarily occurs in new Cu pipes
Summary	Cu release is sensitive to water quality Difficult to control Cu release if pH < 7 Cu release seldom an issue if pH > 8 More difficult to control Cu release as DIC increases
	Orthophosphate is an effective Cu corrosion control chemical in new Cu pipes • But inhibits aging process
	ASDWAL 43 43

lame	Formula	Fe oxidation state
errous hydroxide	Fe(OH) ₂	Fe(II)
erric hydroxide	Fe(OH) ₃	Fe(III)
oethite	α–FeOOH	Fe(III)
epidocrocite	γ–FeOOH	Fe(III)
laghemite	$\gamma - Fe_2O_3$	Fe(III)
lagnetite	Fe ₃ O ₄	Fe(II), Fe(III)
iderite	FeCO ₃	Fe(II)
Green rusť	$Fe(III)_{x1}Fe(II)_{x2}(OH)_{v}(CO_{3},SO_{4})_{z}$	Fe(II), Fe(III)

Slide 73

AA46 Kris, please combine the two audio files

Andrew Appell, 3/15/2021

KNOWLEDGE CHECK

Which of the following will happen if the 'Shell Like

- Layer' of a Fe tubercle is destabilized?
- a) Soluble iron can be released into the water b) Colored water event is likely to occur
- c) Water quality will improve
- d) Particulate iron can be released into the water

ASDWAL

85

Management of Fe Scales and Sediments				
Parameter/Action	Impact on Fe Corrosion	Consideration		
рН	Increase in pH generally produces more stable scales (pH 7-10)	 Potential increase in THM Non-optimal for lead corrosion control with orthophosphate (pH > 8) Potential for cloudy water/precipitation of CaCO₃ 		
Alkalinity (DIC)	Addition of alkalinity generally produces more stable scales	 Moderate - high carbonate in new Cu pipe can increase Cu corrosion Potential for Fe release if alkalinity increase is halted (dissolution of FeCO₃ (siderite)) 		
Buffer intensity (BI)	Higher BI desirable	 Avoid pH 8 – 8.5 in low alkalinity water 		
Dissolved oxygen (DO)	Higher DO desirable	Increase risk of Cu corrosion in new pipe		
Oxidant residual	Higher residual generally desirable	 Potential increase in DBPs Generally more stable scale but may create more mobile particulate Fe Better control of biofilms 		
Unidirectional flushing at low velocity	Removes sediments accumulated on Fe scales	 Flushing velocity must be managed to prevent physical disruption of Fe scale 		
ASDWAL		A		

87

Fe corrosion : Arsenic Chromium Lead Vanadium Uranium In systems wi commonly for Mn solids car Lead Thallium Zinc	scales can directly adsorb met ith manganese, Mn solids are und to occur with Fe corrosion n contain:	scales.	If Fe scales are destabilized • Other metals can release • Potential to temporarily exceed MCL or health advisory level for these metals
 Systems usin	g aluminum based coagulants	may	
have aluminu	m deposited on Fe corrosion s	cales	

Management of Fe Scales and Sediments (Cont.) Minimize stagnation Adds complexity to distribution system (looping) Increases in chloride and sulfate promotes Fe release May require better source water management
 Can influence coagulant selection Manage variability of chloride and sulfate levels Avoid nitrification and manage ammonia Requires establishment of nitrification control program in chloramine systems
Management of source water ammonia Excessive ammonia promotes nitrification; destabilizing Fe scale leve Doses of several mg/L required
 Increase nutrient load to distribution system and WWTP Use of orthophosphate Generally reduces Fe release corrosion inhibitor by producing less permeable scale Will complex aqueous Fe(II) inhibiting oxidation and reduce discoloration of water caused by Fe release Overdosing destabilizes Fe and Mn scales
 Destabilized Pb scales
 Attacks Cu scales
 Release of metals associated Fe/Mn/Pb scales Use of polyphosphate sequestering agent X ASDWAL

	Fe corrosion differs from Pb and Cu corrosion Fe corrosion products form tubercles with defined structure As the pipe ages, corrosion continues
	Fe corrosion scales are far more voluminous than Pb or Cu scales. These scales can substantially reduce cross-sectional are of pipe.
	When shell like surface layer of scale is disturbed, substantial amounts of soluble Fe(II) can be released, ultimately discoloring water.
Summary	Fe scales have high capacity to sorb Pb and other metals When disturbed these scales can release the sorbed metals Can be a source of particulate Pb
	The presence of DO or residual oxidants at surface of Fe scale is needed to control Fe release. (Stagnant water tends to promote Fe release)
	A range of actions can be taken to reduce the rate of Fe corrosion

AA47 Kris please combine 3 audio files

Andrew Appell, 3/15/2021

	As a result (of this section, you will be able to:	
	Apply	our knowledge of corrosion to galvanized pipes	
	Recall	role of zinc in protecting galvanized pipes from corrosion	
LEARNING	Know	how galvanized pipe is manufactured	
OBJECTIVES	Recall	how galvanized pipes lose their corrosion resistance over time, ultimately behaving like Fe pipes	
	Appreciate	the role of galvanized pipes on the accumulation and release of Pb and other metals	
	Identify	how the position of galvanized pipe to other pipe materials can impact metal release	
ASDWAL		Ň	1

0	2
ч	-
~	J.

Formula	Zn oxidation state
Zn(OH) ₂	Zn(II)
ZnO ₂	Zn(II)
Zn ₅ (CO ₃) ₂ (OH) ₆	Zn(II)
s are possible	
	Formula $Zn(OH)_2$ ZnO_2 $Zn_5(CO_3)_2(OH)_6$ s are possible

Material	Anode reaction	Potential (volts)						
Magnesium	$Mg_{(s)} \rightarrow Mg^{2*} + 2e^{-}$	+2.37	. In loss poble correctes in preference					
Zinc	$Zn_{(s)} \rightarrow Zn^{2*} + 2e^{-}$	+0.76	 Zilliess hoble, conodes in preference iron 					
Steel, iron	$Fe_{(s)} \rightarrow Fe^{2+} + 2e^{-}$	+0.44	 Zn provides protection for steel pip 					
Cast iron	$Fe_{(s)} \rightarrow Fe^{2+} + 2e^{-}$	+0.44						
īin	$Sn_{(s)} \rightarrow Sn^{2*} + 2e^{-1}$	+0.14	 Exposed Zn surface forms an oxid 					
ead	$Pb_{(s)} \rightarrow Pb^{2+} + 2e^{-}$	+0.13	coating					
Brass	-	≈ -0.34	 Slows falle of Zill conosion. Extends time the steel nine prot 					
Bronze	-	≈ -0.31						
Copper	$Cu_{(s)} \rightarrow Cu^{2+} + 2e^{-}$	-0.35	 Zn coating is lost 					
Gold	$Au_{(s)} \rightarrow Au^{3+} + 3e^{-}$	-1.5	 steel pipe is subject to increasing 					
DWA			 Pipe typically remains in service aff coating no longer provides protecti 					

Pb which is Released when Scale is Disturbed Elevated Pb and Fe levels in Fe corrosion scales can stagnated water from galvanized pipe Total lead accumulate Pb Pb released if scale physically or chemically Lead private Copper public disturbed Overnight stagnation can provide sufficient to release Fe and Pb If released Pb is largely particulate Concentrations >> Pb 11 12 13 14 15 McFadden et al. 2011 action level are possible Profile sampling in home with aged galvanized pipe downstream of partial LSL replacement ASDWA

Fe Corrosion Scales in Galvanized Pipe can Accumulate

The Challenge of Galvanized Pipe

- Galvanized pipe can be source of Pb
 - From galvanized coating
 Accumulation of Pb from upstream sources
- In systems in which galvanized pipe is common in premise plumbing Replacement of LSL may not eliminate all source of lead because of Pb accumulation on aged galvanized pipe
- Galvanized pipe is obsolete plumbing material. Customers should be encouraged to: Not install new galvanized pipe
 - · Replace aged pipe
- Corrosion control measures suitable for iron/steel pipe should be considered when galvanized pipe is present

ASDWAL

103

104

Å

105

106

Brass

joints

Concern	Description	Comment
Leaching of lead	Lead leaches from brass fixture	 Not concern for brass manufactured after 2014
Galvanic corrosion between brass and Pb pipe or gooseneck	Lead is less noble than brass; will release Pb via galvanic corrosion	 Problem with new connections Older connections generally are passivized but may become active after physical/chemical disturbance
Dezincification	Selective leaching of Zn from brass	 Forms deposits reducing flow (meringue deposit) Weakens fitting, prone to leaks/failure May increase Pb release from leaded brass More likely at high chloride and pH > ≈ 8.3

KNOWLEDGE CHECK After which years did brass and solder respectively become Pb free? a) 2014 and 1986 b) 1998 and 1986 c) 1991 and 1986 d) 2020 and 1991

	As a result o	of this section, you will be able to:	
	Recall	condition that can promote or accelerate rates of corrosion	
OBJECTIVES	Know	water quality conditions which promote corrosion	
	Interpret	corrosion indices and their potential uses	
ASDWA			X .

Corrosion Indices Involving Calcium Carbonate Stabili					
Index	Equation	Indicator		Useful for	
Langelier Saturation Index	$LSI = pH_{actual}pH_{sat}$	LSI>0 LSI<0	Supersaturated, tends to precipitate CaCO ₃ Undersaturated, tends to dissolve CaCO ₃	Estimate condition relative to CaCO ₃ saturation	
Stiff and Davis Stability index	S&DSI = pH_{actual} , pH_{sat}	S&DSI >0 S&DSI <0	Supersaturated, tends to precipitate $CaCO_3$ Undersaturated, tends to dissolve $CaCO_3$	Estimate condition relative to CaCO ₃ saturation for waters > 10,000 mg/L TDS	
Ryznar Stability Index	$RSI = 2pH_{sat}\text{-}pH_{actual}$	RSI>6 RSI<6	Undersaturated, tends to dissolve ${\rm CaCO}_3$ Supersaturated, tends to precipitate ${\rm CaCO}_3$	Estimate condition relative to CaCO ₃ saturation	
Puckorius Scaling Index	$PSI = 2pH_{sat}-pH_{eq}$	PSI>6 PSI<6	Undersaturated, tends to dissolve ${\rm CaCO}_3$ Supersaturated, tends to precipitate ${\rm CaCO}_3$	Estimate condition relative to CaCO ₃ saturation	

(Corrosi (cont.)	on Indices	Involvi	ing Calcium Carbonat	te Stability
	Index	Equation	Indicator		Useful for
	Calcium Carbonate Precipitatio n Potential	CCPP = Caactual- Casat	CCPP>0 0 to -5 -5 to -10 < -10	CaCO ₃ scaling will occur Passive Moderate Aggressive	Estimate quantity of CaCO ₃ precipitated or dissolved
	McCauley's Driving Force Index	DFI = $(Ca^{2+} x CO_{3})/(K_{sp} x 10^{10})$	DFI>1 RSI<1	Undersaturated, tends to dissolve CaCO ₃ Supersaturated, tends to precipitate CaCO ₃	Estimate condition relative to CaCO ₃ saturation
A	SDWA	These indi	ces <u>do no</u> metals	<u>ot</u> predict the corrosivity tov (Pb, Cu, Fe or brass)	vards

ndex	Equation	Indicator		Useful for
Larson Index	LI=([CI [·]]+2[SO ₄ ^{2·}])/ [HCO ₃ [·]]	LI>0.5 LI<0.5	Corrosion possible Corrosion unlikely	Corrosion of iron and steel
Larson Scold Index	LS=[Cl ⁺ +SO ₄ ^{2·}]/ Alkalinity	LS<0.8 0.8 <ls<1.2 LS>1.2</ls<1.2 	Chloride & sulfate will not interfere with natural film formation Chloride & sulfate may interfere with natural film formation Tendency toward higher localized corrosion	Aggressiveness to mild steel
Aggressive ndex	AI=pH+ log(AH) A=Alkalinity H= Ca hardness	AI<10 10 <ai<12 AI>12</ai<12 	Highly Aggressive Moderately Aggressive Non-aggressive	Aggressiveness to AC or concrete lined pipes

<u>RA48</u>	'Red Flags' exist indicating greater risk of Pb and Cu release Distribution system and premise plumbing materials Source water quality Treatment processes and performance Distribution system operation				
	Certain water quality conditions are more challenging for controlling corrosion than others: pH, DIC, other common water quality parameters				
Summary	Many indices exist for predicting calcium carbonate stability – these indices are of limited value for predicting effectiveness of Pb corrosion control • Their value is in predicting CaCO ₃ deposition				
	Some indices are of value for predicting aggressiveness to Fe, steel or AC pipe: Larson Index, Larson/Scold index, Aggressiveness Index				
	The presence of DO or residual oxidants at surface of Fe scale is needed to control Fe release (Stagnant water tends to promote Fe release)				

and DI	cally Adj C	usting \	Water C	hemistry – p	H, Alkalinity
	Common		Impact on		
Chemical	name	Formula	pН	Alkalinity	DIC
Sodium bicarbonate	Baking soda	NaHCO ₃	Moderate increase ¹	Increase 0.6 mg/L as CaCO ₃ per mg/L NaHCO ₃	Increase 0.14 mg/L C per mg/L NaHCO ₃
Carbon dioxide		CO ₂	Reduce	None	Increase 0.27 mg/L C per mg/L CO ₂
Sodium hydroxide	Caustic	NaOH	Increase	Increase 1.25 mg/L as CaCO ₃ per mg/L NaOH	None
Potassium hydroxide		КОН	Increase	Increase 0.89 mg/L as CaCO ₃ per mg/L KOH	None

	Common		Impact on		
Chemical	name	Formula	pН	Alkalinity	DIC
Calcium nydroxide	Hydrated lime, slaked lime	Ca(OH) ₂	Increase	Increase 1.35 mg/L as CaCO ₃ per mg/L Ca(OH) ₂	None
Sodium carbonate	Soda ash	Na ₂ CO ₃	Moderate increase	Increase 0.94 mg/L as CaCO ₃ per mg/L Na $_2$ CO $_3$	Increase 0.11 mg/L C per mg/L Na ₂ CO ₃
Potassium carbonate	Potash	K ₂ CO ₃	Moderate increase	Increase 0.72 mg/L as CaCO ₃ per mg/L K ₂ CO ₃	Increase 0.09 mg/L C per mg/L K ₂ CO ₃

AA48 Kris, please combine audio files

Andrew Appell, 3/15/2021

Limitation	Summary	
Inhibits formation/destabilizes Pb(IV) scales	PO ₄ may not be as effective as anticipated if Pb(IV) scales are present.	
Increased biological activity - Higher ATP levels - Higher HPC levels - Greater diversity of microbial community	Greater biological activity in distribution system and premise plumbing. Biofilms are associated with increased T&O, turbidity, disinfectant residual demand and harboring opportunistic pathogens.	
Increased loading to WWTP	4 mg/L PO ₄ dose could increase total P input to WWTP from drinking water by as much as 0.8 mg/L P.	
Optimum dose and pH varies by metal	Optimum pH and doses of PO_4 for Fe, Cu, Pb and brass are not the same. Must balance treatment objectives.	
DWAL		2

Limitations of Orthophosphate as a Corrosion Inhibitor

KNOWLEDGE CHECK

What are the treatment approaches are effective for Pb and Cu corrosion control?

- a) Adjustment of water quality conditions by changing pH and/or DIC
- b) Use of a sequestrant
- c) Use of corrosion inhibitor
- d) Produce water with positive LSI

ASDWAL

145

4449 	There are many aspects to a corrosion control program - treatment is only one part of corrosion control				
	Two corrosion control treatment approaches are possible Adjustment of water chemistry via management of pH/DIC Addition of corrosion control chemical				
Summary	Management of pH/DIC Several chemicals can increase pH but generally only CO ₂ is used to decrease pH Only hydroxides can be used to increase pH without increasing DIC In some cases DIC can be decreased by aeration (air stripping CO ₂)				
	Two corrosion control chemicals exist • Orthophosphate • Silica (infrequently used as a corrosion control chemical)				
	ASDWAL				

146

147

AA49 Kris, please combine audio

Andrew Appell, 3/15/2021

Slide 147

AA50 Kris, please combine audio

Andrew Appell, 3/15/2021

Slide 149

AA51 Andrew Appell, 3/15/2021

AA52 Kris, please combine audio

Andrew Appell, 3/15/2021